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suMMgRY .

. .
Qn the basis of current heat-transfer theory, equa-

.tians are developed relatlng”the varioud dlmensione,” the
air weight flow, and the performan~e of a cross-flow tubu-
lar Intercooler In which the charge flows throtih and the
cooling air-across the tubes. These equations are then
presented in graphical form in a series”of design charts
from which the Intercooler design characteristic and per-
formance can be qulckl~ determined. A method of determin-
ing and presenting the performance of a given Intercooler
at various operating conditions 5s indicated.

Comparisons are made with the type of croOm-flow tn-
bular intercooler in which the cooling air flows through
and the c-barge across the tubes. ~or a given charge and
cooling-air pressure drop, alr weight f’low~ number of
tube banks, and tube weight, the two t~es generally have
different valuee of cooli~g effectivene8e and have differ-
ent over-all dimensions. Yor operation at condltlone that
are fairly representative of aircraft Intercooler prac-
tice, the charge-through-tube type usually requires mre
space than does the charge-acrose-tube type of Intercooler.

II?TRODUCTIOI?

Cross-flow tubular Intercooleks fall Into two general
cla80et3: namely, (1) those In which the cooling air flowe
through and the charge acrose the tubes, and (2) those In
which the cooling air flows across and the charge through
the tubes. The selection of either of these types and Its
design varies with individual Installations; the relative
importance of intercooler size, weight, pressure drops,
and ease of construction being the governing factor. The
many variables Involved in the design and performance of
cross-flow tubular intercoolers tend to make the choice
.of the optimum type and its design very difficult. It IS

possible, however, to correlate these variables on the
basis of heat-transfer theQry In such a manner as to re-
duce this difficulty considerably. Design charts based
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on these oorrelatlons are ‘presented in reference 1 for
the t~e of cross-flow tubular Intercooler in which the
charge flows across tubes, the centers of which lie on
the apexes of equilateral triangles (class 1). Since in-
stallation requirementta. in some cases, would he better
satisfied by an intercooler of the charge-through-tube
type (class 2), a second set of similar charts has been
prepared for this ty~e with similarly arranged tubes and
is presented in thie report. An investigation based on
publlshed test data was made of the effect of other stag- “
gered tube arrangements on intercooler performance and
size; the application of the design charts to these ar-
rangements is discussed.

This work was conducted at the Langley Memorial
Aeronautical Laboratory at Langley yield, Vs.. from
August 1940 to January 1941.

SYMBOLS

E heat-transfer rate, Btu per second

h surface heat-transfer coefficient of air, Btu
per second per square foot per ‘3’

M rate.of air flow, pounds per second

x distance along a tube, feet

z length in direction of air flow, feet

at inside tube diameter, feet

dc outside tube diameter, feet
. .

d average tube diameter, feet

$ (di + do)

n number of tube banks in direction o-f flow
across tubes

s minimum distance between walls of adsacent tubes
measured perpendicular to direction of flow
across tube banks, feet



~ tube pitch measured
flow acroes tube

—

3

parallel to d%rection of
banke, feet

- .- ..- -
v ‘“nlax v~l-o’city tlirough--th”emm’in-irn-tihtiptice s, feet

per second

IT number of tubes

f rat%o of total oroOs-sectional area of lnter-
cooler tu>eta to area of charge core face

w width of lntercoo2.er block, feet

v volwne of Intercooler block, cubic feet

c contractlonal-”loss coefficient

E acceleration of gravity, feet per secofid per
Oecond

‘P eFecif’tc hee.t of air at constant ~resfmre
(0.24 Btr! per ib per ‘Y]

@ total ~reswme drop across the Iuteroooler,
inchee of Fa$er

Po standard atmospheric density (0.0765 lb per
Cu f’t)

a density of air relative to standard atmosphere
(P/Po)

P power required to force air across Intercooler,
horsepower

To cooling-air temperature at Intercooler entrance,
OF

T1 mean cooling-air temperature differential above
ex To at intercooler exit, Oy

T= charge temperature differential above To at
Intercooler entrance, or

-— —- ---
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amount of heat per seconfl d~ exchan~ed between thg
charge am.?.the cooling air through an elemental length.
of tube dx l-s-

..

(1)

where T= ‘n) is the temperature differential above To
x

of the charge at distance x along a tube In the nth bank
a~a TV IS the temperature dif.zerent$al Rbove To of the
tube wall. I!quation (1) involves the asqumntion that the
lot”.1 coolinp air temperature at moint x can te replaced

by T (n) ~tihich5s defi~ed as ttie mean temeratu=e dif-
‘av

ferential above Tn of the conliag air acrosg =nd over

the length of a tube in the nth bank. The justification
of this assumption vi]l he discugsed in detail later.

When !?W Is eliminat~,d in equation (1)

(3)

Then when equation (2) Is Integrated

T ‘m)=T (=+T ‘n) - T ~ - e-c’x)( ) (4)
ax 1av a

\

Alse, the total heat g~ven um by the charge to the
nth bank of tubes Is

. . ..- ..
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Ta(n) Is the temperature differential above Towhere

of the charge at the exit of a tube in the nth bank and

T (n) (n- 1)
1

and TX are the temperature differentials

a~ove TO of the coolizg air after the nth and (n-l)th

bank, respectively. The solutton of equation (5) for

Tl(n) ~~

~(n) =T(c-l)+r T
(

- Ta(n)
1 1 a )

(6)

M*
where r = —hi~m

Tlien the averege temperature differential above To of

the cooling air across the nth bank is

(7)

When equation (7) Is substituted In equation (4) and the
total length of the tube is considered,

~a(n)

[

(n-l)+~ Ta-Ta(n)
=Ta+ TI

2 ( )- T.] @-e ‘c’:’) ‘8)

In order to eliminate from equation (8) all terms

~z(j) where j ranges from o to n - 1, the following

procedure is used:

Trom equation (G)

If In equation (8) this substitution is made and if the

-... . ..- . .
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#1)
procedure is repeated n - 1 times, will be found

,U to be a funatlon of T= (d) only. !Che result is written
-$-F..,.... ....-----,.

Yor the flret bank,

J=o

=(l+T)Ta

Likewise for the second bank,

=(l+y+r~a)Ta

Also for-the thldd bank,

T=(3)
= Ta (l- 3r7+y) +r”/

[
T=+T= (l+~)+Ta (l+ IY+rVa) 1

‘-...
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The foregoing operations indicate that for the mth bank

.,

*a(m)

[ 1
= I+y;l+ry)pl Ta (lo)

The average exit char~;e t&tiRerature Ta is obtained
ex

upon proper summation

J=m
(J)

T3e= =
~Ta

=Ta+~
m = [1*1 “ ’11)

on the assumption that the same quantity of air flows
through each tube. The cooling effectiveness ie

The exFonent Clta in equation (12) Is evaluated in

terms of the intercooler dimensions and the alr weight
flow by the same procedure as that followed in reference
1 for the equilateral tube arrangement. It will be shown
later that within the range of available test data the
surface heat-transfer coefficient hl and thus the ex-

ponent C1Z2 is only slightly changed by the use of other

staggered tube arrangements. As in reference 1 the ther-
mal conductivity and the absolute viscosity of the cooling
air and the charge, as used in determining the heat-trans-
fer coefficients, were eval~ated at a conetant value of
59° and 100o F, respectively.
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i.oal X 10-s.. (*Y”a” (sY”’ (:)

1 + 0.646
(2$”e(+j=’’(:)O””s (300”’

(13)

Expansion of the right-hand member of equation (12)
shows that the variation in m after five banks~ ae it
appears explicitly In that equation, has a negligible ef-
fect on the cooling effectiveness. The influence of m
on the cooling effectiveness Is through the exponent
c!~. The cooling effectlvenees can then be stated as a

fun~tion of Hi/Ma, ta/dn md/s, and fid/Ml, the same

factors involved in bhe cooling effectiveness expression
given in reference 1 for the type of crosm-flow tubular
Intercooler in which the c’barge flows across the tubee
and the cooling air, through the tubes.

In order to make grarhical rspresentatlon less com-
plicated, the effect of /Yd L1 mar be accounted for by
letting

(:) (:s’”3=100”’(>)
1 eq

($9 (f Y””=100”36(’#)eq
whore the subscript eq means equivalent.
can now be written

Equation (13)

1.634 X K1-a ($”8 (;)eq
c1

L* = ‘—

. 1+0.602 ($”a(&)O””’G y”’ (14)
eq . eq

l’lgures based on equations (i2) and (14) will be presented
to show the effects of the factorO Mz/~a ~ (%a/d)eqs and

.
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(ds)eq on the coollng efTectlveneae. The corrections

to be applied to l~~d and mdi~ to obtain (la/d) gq.

and (md/~) eq will be presented in graphical form as ,

functions of lid/Ml.

Freaeure Dror of Cooling Air

The pressure drop due to friction in air flowtng
across staggered banks of tubes the centers of which lie
on the apexes of equilateral t?langles la evaluated by
the same method used In reference 1. It will be shown
later that within the range o: available teet data the
friction factor flll and thus the cooling-air pressure
drop API is changed only sll~htly by the use of other

staggered tube arrangements. As In reference 1 the vis-
cosity of the cooling air 1s evaluated at 59° E’.

.

Pressure Dro~ of Charge

By the procedure followed In reference 1 to determine
the pressure drop of air through the intercooler tubes,
the following equation is obtained upon addition of the
entrance, fluid-frictional, heating, and exit pressure
c-hanges:

+ 0.00124
(N+;”” ($$” ($$”’ ~ (1’)

.
where

(
2-

A =
2- )$2 (~ - 1.09f2 - 0.91) + (2 - ~) (f* - f+ 1)

and
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Ta - TB~x

pa= —— n=
~a+-.~o+.4m (

To + 460

)
1+”~

=-
-%.

As in reference 1 the viscosity of th~~ge ie evmluat ed
at 100° B’. A FIOt of f is given inn-eference 1 for the -
equilateral tube arrangement. The facto~ 6 Is a func-
tion only of f and is plotted in re~ecreme 1. The fac-
tor ~a. Is Introduced to evaluate the hsatlng pressure
regain and to give the entrance and exit-pressure changes
in terms of the mean charge density. &@ange in staggered
tube arrangement from tke equilateral spacing cauees a
change in f and thus a change in tha -trance-exit pres-
sure drop. This pressure drop, however.. is usualiy a
small portion of the total drop, espedally for long tubes.

cooling-Air Fewer Lose

By the procedure followed in reference 1, the expres-
sion for the Fewer required to force cooling air acrosn
the intercooler is,

(17)

When the power is expressed as a percentage of the engine
brake horsepower for a fuel-air ratio of 0.08 and a spe-
cific brake fuel consumption of 0.5 pound per brake horse-
power per hour,

o-#Pz (loo)

[)

a
100

aF1
.——— ‘av
brake horsepower E?% — Ma

.

Charge Power LosfJ

The power required to force the charge through tbe
Intercooler is given In reference 1 as

.



I ■ m l-m-m- InI mmn m— —. I— —I
—. .—

I

(T2 %* 5.2cra ‘Pa
nv Rv

—iii = 550 p.
(18)

a~d for a fuel-alr ratio of 0.08 and a specific brake fuel
consumption of O. 50 ~o-a~d per brake horsepower per hour

a= 2??2.(iOG) ()u= aP2
av 100 Qv-—-——

breke horse~ower E T2—

The relative densities (a) in the foregoing equations are
average densities. Tne rslation between the average and the
entrance densities, whea tne effects of preesure changes
in the :ntercooler are ne~lected, ma~ be expressed as
follows:

( 2+p~
a = al -——
1av en 2 + 2p1 )

(M#?J ‘qTa
where b~ = —--.——

To + 463

( 2-
Ua = cJ~ $8--—-—

av en 2- 2fi2)

TIT2
where b. = ‘—Ta + To + 460

(19)

(20)

Intercooler Dimensions

The dimensions of this type of intercooler may be ex-
pressed as follows:

The dimension of the block in the direction of the
cooling air flow Is
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Zz=sp(m-l)+do

“
.-, ,.

where, for the 6du.ilat6rtil ‘arra’ng-ern6nt; 8P E 0.866 (s + do)

The width of the block is

‘=(:+ $)(”+’0)
The volume of the block is therefore

v =Zalcw

where la Is the dim;ns~on in the direction of the charge

flow (tube length).

DISCUSSION

The Cooling Effectiveness Equation

In the Integration of equation (2) the local cooling-
air temperature differential above To

a tube in the nth bank was replaced by :; a(% :ntt;:ong
av

average temperature differential above To of the cooling

air across and over the length of a tube in the nth bank.
This assumption is valid only if the air along a given
tube completely mixes, thus equallglng the temperature of
the cooling air along that tube. Since some mixing pro-
bably occurs, the true condition lies between that assumed
In this reFort and the condition aesumed by Eusselt (ref-
erence 2) that no te~erature equalization occurs along a
tube. If, however, equation (12) is compared with
I?usseltls expression for the oooling effectiveness (see
reference 2), it is found that: (a) equation (12) 1s rel-
atively simple; and (b) In the usual range of effectiveness
values used in intercoolers, the results obtained from
equation (12) agTee fairly well with I?usseltts results.

A comparison of the effectiveness values derived by
the two expressions is given In figure 2. This figure
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shows that over a wide range of effectiveness values cov-
ered by the design charts presented In this raport, the
two analyses give the same results. In the range of
higher values of cooling effectiveness, however, the
Eusselt analysis gives slightly higher values, the maxi-
mum difference In the raage of the design charts being
4.0 percent effectiveness. The values g?.ven by equat50n
(12) are used in preparing the design charts; they uke
for slightiy co~servatlve values of cooling effectiveness
which may be corrected to the Musaelt values, if desired,
by the use of figure 2.

Effects of Primary Iatercooler Variables

Figure 3, which Is a plot of equations (12) and (14),
shows that the cooling effectiveness “increases with
M ~/Ma , ( ta/d) eq, and (red/s)eq at a rate that dimin-

ishes as these variables increase. The effect of ~2/d

and md/ g on the cooling effectiveness is nearly the same
as that of (l*a/d)eq and (md/’s)eq. The covrectlons re-

lating the actiual ~z~d and md/s to (X=/d) eq and

(md/~)eq. resgectiuely, are re~lotted against Kd/l:l in

figure 4 from reference 1.

Equations (15) and (16) Indicate that an increase in
either is/d, md/s, or M=/Ez, for a given Ma in an

attempt to attain higher values of cooling effectiveness,
Is accompanied by a~ increase in pressure drup through
the intercooler or across it. In the selection of an in-
tercooler these pressure drops and the consequent power
expenditures as well as the intercooler weight and size
must be considered.

Design Charts “

Although equations (12), (13), (15), and (16) may be
used to prediCt Intercooler performance when the inter-
cooler dimensions and weight flows of the charge and the
cooling air are known, their application would prove quite
cumbersome. By the introduction of d$mpllflcations 3den-
tical with those of reference 1, these equations are rep-
resented graphically In the form of charts (figs. 5 to
10) readily usable by the designer. These simplifications
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detrect little from the vsd.ldity
resulting errors are weli wlthln
accuracy.

-—. ,, ,.. .... L:.--, -LA---

The basic .vai-ia$les uqed in

of the charts elnce the
the llmlt of experimental

.. .. . . . .. . -.

the construction of the
charta are la/d, red/e, El/Ma, ~dla/Ma~ m, O1avApl* and

~a avApa . The main dee?gn charta (flge. 5, 6, and 7) give

for variouO valuee of Mx/:a and Xa/d the cooling ef-

fectiveneefa plotted againet. ?;dlgi~ S which 1s an index
of heat-transfer aurfaca a~d thy~ o? tube weight. Each
figure is given for a constant value of m (5, 20, and
30 benks of tubes, respect$..:dly) and covers the range of

~L avAP 1 from 2 inches to 6 ?.-:chescf water. Linear

interpolation for intermediate values of m and ~lavAPl

gives results well within e~srti-antal accuracy. The main
design charts are celculatc?. for a constant value of

~% ~PZl (5.5 Inches of water). Because variation in Pa
av

has a negligible offzct on the values In these c-harts a
constant value for ~~ cf 0.20, which represents a usual
condition, was used in the pre~aration of the charts.

Hitn the aid o: figr.~ee 8 aad Q(a) these design
charts msy be ueed for other veluee of a= Apa. Figure

av

8 gives the correction to be addet. algebraically to the
chart values of lz~d for various valuea of Ua APa and

av

Xdla/Yg. Likewls~ figure 9(a) containa the corrections to

be-added algebraically to the chart values of cooling ef-
fectiveness ~.

The tablea inoluded in the main design charts give
the power e~enditures Involved In the operation of an
Intercooler. B’lgure 9(b) givee the varlatlon In the power
required to force the charge through the intercooler with
charge pressure drop aa A%. Aside froxn.these power ex-

av
penditures are those due to tLe Intercooler weight, duct
losses, and reduction in manifold pressure - all of which
depend on installation and flight condlttons and should” ,
be considered h the choice of “JhEI optimum intercooler.
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Some energy may be secovered Srom the cooling-air stream
by means of the Meredith efiect.

Yigure 10(a) gives, for an intercooler with 5 banks

/

m~~ M&
of tubes, a plot of md/s agalz6t for varioue

F Ma

~d~c MI
values of al Ap= . Tor given values of —

av /MA . G
ana

uaavApL a change In the numbe? of tube banks of an lnter-

cooler must be accompanied by a chaLge in red/s. This
change io given in figure 10(b) in the form of a plot of

(?a/(?w-s’ ‘tiaeret’esubscr’ptonmd/e
denotes the number of tribe banks for which that value of
red/e applies.

Effect of ~u>e Arrangement on

Intercooler Claracterlstlce

Yigures 11 and 12 are plots of data obtained from
references 3, 4, and 5, anq show the effect of staggered
tube arrangement on the surface }~e~t-transfer coefficient
hl and the friction factor fllla In these figures

hldo/kzf and f~~~ are plotted against the ratio

ep/(s + do) for various values of e~do and Reynolds

number . The Reynolds number In figure 11 Ie based on the
tube diameter, and In flgurg 12 it 1s based on the dimen-
sion s. In each of these figures the equilateral tube
arrangement is indicated by the vertical line at

ep/(s + do) = 0.866 on which are marked the values of

h@o/kzf and fll? obtained fron reference 5 and used

in this report to evaluate Intercooler performance.

It Is shown in glgures 11 and 12 that hldo/klf and

fit! are nearly constant for a large range of values of

Op/(s + do) and are approximately equal to the values of
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Wo/%f L-a f’ltl gi~en by re:erence 5 for equilateral”

Elpaclqg. Thus the design charts, although baeed on the
data of.,reference 5. ap~.ly wlthha

7

oqd degree of accuracy
for a large range of values of 8P-(s+ do). It Is evi-

dent that the intercoolsr dimene~on In the direction of
cooling-air flow 21,”~ad Eenee the intercooler volume v~

can be decreaeed by decreeing s#s + do) with little

change In Intercooler performance. There is probably a
lower limit to Sp/(s + do) beyond which further reduc-

tion in this dime~slon results AU &n undesirable change
in Intercooler perform~nce. ~ne range of the available
data IIS not sufficient? l&:-ge %0 show “this lower limit
except possibly in the case of B/d. = 2, where the.

ITusselt number apperrs t~ decrokcg mar~edly below the
value of ~p/(s + do; = 6.4. The snallest values of

Sm/(s + do) and the correspondflng values of s/d. cov-

e-red by the test da~a of references 3 and 4 and shown in
figures 11 and 12 are given in the following table:

s/~ 0.25 0.5 1.0 2.0

Sp/(S + do: I.oc .67 ● 45 .20

In the case of s/’. = 0.25 the value of sp/(s + do)

could have been reducei f:~iz 1.00 to 0.866 (equilateral
spacing) with little change in hzdo/klf or fll?. In

reference 1 tests are repo~tefl In which the value of s/d.

was 0.038 for the equil~t~ral tmbe arrangement, and the
results agreed with the equat:ons for /nldo klf and flit

presented in reference 5.

Attention is called to the fact that the surface
heat-transfer coefficient e%orn ia figure 11 represent
the surface heat transfer on the outside of the tubes
only, and that variations in the cooling effectiveness of
an intercooler are not as great as the variation noted
in this heat-transfer c~eff:cient. Yigure 13 shows the
ratio of percentage change a (= d~/~) in cooling effec-
tiveness to the percentage change $ (= dhl/h.) in the
outer-surface heat-transfer coef<iclent. These curves
are based on equation (12). According to this figure, in
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the usual range of intercooler practice the percentage
change in ~ Is lesti than that In hz by a factor of
0.5 or less.

It appears that considerable latitude in
‘P

is per-

mitted for a given value of s w~thout serious change in
Intercooler performance -t with very appreciable varia-
tion in Intercooler volume. Consequently the design
charts presented in this report are not limited to equi-
lateral tube arrangement but should also be applicable
with a fair degree of accnrac;- to other tube arrangements
within the extent of the e-vi~ence presented.

Although hidden by the iisFersion of the data (fig.
11) there are probably opthnuu values for SP which pro-

vide slightly better performance than the eq~ilateral
spacing= It is believed that further tests on the effect
of

‘P
on heat transfer and yressure drop covering a

larger range than the data given in references 3 and 4
should be made in order to ceterinine (a) the values of

‘P
for maximum performance and (b) the values of Sp be-

low which the performance decreases rapidly.

Illustrations of the Use of the Intercooler Design Charts

Case I

Let it be SUp~OSOd that an intercooler is to be de-
signed for the following set of conditions:

Engine and supercharger characteristics:

(1) Charge ma~s flow Ma, pounds
per second- - - - - - - - - - - - 1.75

(2) Charge temperature at supercharger

outlet, ‘F- - - - - - - - - - - 160

(3) Charge prcssuro at supercharger
outlet, ~n~hes of mercury

absolute- -- - - - - - - - - - - 40

Desired intercooler dimensions:

(4) Average tube diameter d, feet - - - 1
Zir
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(5) Number of tube banks m - - - - -

(6) Tube-wall thickness t , feet
-- (copper density pt , 655

lb/tuft ) --------- --

Intercooler limitations:

(7) Coolin~air pressure drop API.
inches of ~ater- - - - - - - -

(8) Oharge pressure drop APa, Inches
water- -- - - - - -- - - --

20

0.0005

8.0

of “
4.5

Desired Intercooler performance at 21,000 feet
altitude:

(9) Cooling effectiveness q,

The intercooler design will be made

It is desired to find the following
characteristics:

Tube length la

Number of tubes M

Traneveree tube spacing s

Farallel tube Hpaoing Sp

percent- 60

for 161/Me= 2.

l.ntercooler

Weight of Intercooler tubee ?F~ and dimensions of
intercooler

Power required

cooler tube

Power required
cooler Fa

(10) From

block

to force cooling air acroOs the inter-

banks PI

to force charge through the inter-

a table of standard altitude at 21,000
feet
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=1 en
= C.52 .

To = --16° P

(11) From items (2) , (9) . and .(10) and from

equation (19) for Ml/M= = 2

so that

CT
lav = 2.-.19..— . -—-

U1 en 2.238
= 0.95

(12) I’rom items (7), (?.0), and (11)

c 1 avm= 0.95 X 0.52 X 8 = 4 Inches of water

(13) Prom :.te.ns(2) cnd (3)

(14) From items (2), (9), and (10)

C!.6 X 176pa ---— -——————
176 + 4~~ - i6 = O-17

so that

(7
aav 1.83---— =

Gaen .—-= 1.10
i.6ti

(15) From items (8), (13) , and (14)

~2avAP2 = 1.10 X 1.115 X 4.5 = 5.5 Inches of water
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. . . . .

and

so that

(16) If figvre 6(b) which applies for m = 20,

~la#?l
= 4, and U*avAP* = 5.5 Is used,

.. .
for ~=~~ = 2 aad q =“ 66

.

lWta/Ma = 28.9

(17) From items”(4) and (16)

la = 2.66 feet

(18) From ite~s (1), (4), (16), and (17)

M
28.9 X 1,75= -- -—— = 916 tubes
2.65x ~

(19) If figure l~(a) and itens (12) and (16)

are used for Ml/M* = 2

(l?d/s)6 = 75

(20) If figure 10(b) end items (5) and (19) are

used

bddso
/

bald= = 0.582

(md/s& = 43.5 .

(21) From lt~ms (4) , (5) , and (20)

,

2ox&
s = ‘— = 0.00958 foot

43.5
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.

(22) ~rom items (4) :“(6) , and (21)

i3/do = ~~ = 0.45, so that, from figure 11,

within the rauge given, the lowest value of

lapin + do = 0.67 and thus

ep = 0.67 (0.00968 ; 0,0213) = 0.0207 foot

(22a) ~or the equilateral arrangement

Sp = 0.~66 (0.0095e + 0.0213) = 0.0268 foot

(23) From itens (1) , (6), a~d (16) the weight of
the interco~ler tubes is

(0.0005) (26.9) (1.75) (555m) = 44.2 pounds

(24) Dimenston of lnterc~oler block In direction
of cooling-air flow from items (4), (5),
(6) , and (22) is

(0.0207 x K? i-0.0713 s 0.41 foot

when -3_ . 0.866 (equilateral arrangement)
s+do

(0.0268 X 29) + 0.0213 = 0.53 foot

(25) Width of int eroooler block from Items (4), (5),
(6). (18), and <21; is

(916+1~
20

~j (0.0213 + 0.00958) = 1.430 feet

(26) Volume of ~ntercooler Flock when

em

s+do
= 0.67 from items (17) (24),
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and (25) i~

2.65 X -0.41 X- 1.415 = 1.537- cubio feet”

‘P
and when ——= @.866 isq+do

2.65 X 0.53 X 1.415 = 1.987 cubic feet

(27) Prom table at top of figure 6(b) for Ml/Ma = 2

u~ *P ~/M* = 0.9$ horsepower
av

%#a=8av
= 0.68 horsepower

per pound per

per pound per

second of charge flo~

(29) From Items (l), (10),

Pz =
O.?J x 1,75

—.. .—— ——

(0.$s x 0.52)3

(30) From Iteme (l), (13),

(11), and (27)

= 7.1O horsepower

(14), and (28)

O.E? Y 1..75
Pa = ————

(1.115 x l.lo)c
= 0.79 horsepower

In figure 2 It Ie shown that the value of q from
the Eu6melt analyeie for Ml/Ma = 2 is 1 percent higher

than the value 60 used In this example.

Cese II

The effect oa intercooler dimensions and Performance
of a change Iq charge prose-ire drop ua avAPa from 5.5

. — —.—
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inches of water, for which the rain design charts have
been drawn, to another valua is illustrated by the follow-
ing example:

In case I suppose that Ua ‘Pa is Increased to 8.0
a~

Inches of water: the engine and supercharger characteris-
tics, the desired Intorcooler dl~ension~, the remaining
Intercooler limitation, tile altitude. and the value of

@~ being kept the sane.

(31) If figure 8 and item (16) are used
.

2A; =19 -

(32) From fig”zre 9(a) and for E#2 = 2

AT=; percent

so that

n =60+2= 62 percent

(33) Yrom items :16) and (31)

Z----=
d’

127 + 19 = 146

and

2= = 3.05 feet

.

(34) ~rom i~ems (l), (4), (16), and (33)

E
23.9 x 1.75= --—-——.

3.C!5 x ~+
= 796 tubes

(35) Inasmuch as NdZa/l!a is keFt constant with

Ca&vAp2, the”re~ght of the intercooler

tutes remains the same.
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(36) The tube spacing does not change becauee

the same. JThu.e.tbe dimension.of the
Intercooler block In the direction of
cooling-air flow Is the same; the width
changes Inversely with the change in
tube length, thereby keeping the inter-
cooler volume the same.

(37) If figure 9(b) is used

ap.
U* Q = 1.00 horsepower per pound per

av Ma

second of charge flow

(38) From items (12), (24) ,

P~=-
1.00 x 1.75

(1.115 x 1.10)2

(39) The coolinpair relght

and (37)

= 1.16 horsepower

flow and the attend-
ant Fever loss across the Intorcooler re-
main the same as in case I.

Ferformence Charts

It has been shovn how an Intercoaler is designed and
how the performance Ie predicted for a given set of oper-
ating conditions. Although the design charts can aleo be
used to predict the performance of the desl~ned inter-
cooler at other operating conditions - for example, opera-
tion at another altitude or perhaps operation with a dif-
ferent weight of charge flowing through the tubes, there
Is a simpler and more direct method involving the use of
figures 3 and 4 and the reiations between pressure drop
and we5ght flow of charge and coollng air. The informa-
tion can then be presented in convenient form for use by
designers to determine the intercooler characteristics at
any operating condition. The FrOcedUre for obtaln2ng an
intercooler performance chart is summarized in the follow-
ing outline and an illustrative example presented.
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1.

2.

Relation between =Zav AP ~ and Ml

Equation (15) shows that a Apl varies directly

with M1l””*.
1av

Relation between a Ap and M
salt = a

The exact relation between a= Apa and Ma (eaua-
av

tion 16) is quite involved because a portion of
the pressure drop (entrance, exit, and heating

losses) varies with Ma= while another portion

(tube frictional loss) varies with Mal”e. In

symbolic form for a given intercooler,
.

‘aav Ap2 = Mal”e
( )

Kz + KaMao”a

where KI and K= are constants.

!l!hevalues of KI and K= can be found from the
Intercooler dimensions and thus the relation be-
tween ‘aaV ‘F a and Ma can be definitely estab-

lished. Because the frictional loss in the tubes
is a large portion of the total loss (in the in-
tercooier of case I for a= AD a = 5.5 inches of

water the tube frictional l~~s was 87 percent of
the totsl loss), the simpler yet sufficiently ac-
curate expression,

u= AP= = K3Maz”e
av

where K3 is a constant, may be used.

Relation of ?’I to u Apl and u Ap a
1av anv

For a given intercooler Ap ~ determines‘Iav

ML and Nd/Ml, which, in turn, fix the values of
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(x*/d) eq
and (md/s)eq. (See fig. 4.) l?rom

figure 3, for the given (la/d) eq and (red/s)eq,

~ can be plotted against ‘-Mi/M*. Then for every

oooling effeotivenegn value there 18 a correspond-
ing value of Ma and thus a corresponding value of

‘aavba” This proscdu~o iF repeated for VariOQfI

values of =l*V*P1”
.,

4. Procedure for drawing performance charts

The performance chart g~re~ for a certain Intercooler
the relations of v to UI API and Ua APa, of

av av

Cl ApX to U%, and of ~aavApa to Ua. In order
av

to Increase the scope of the performance chart, the
air weight flown ase glvea per unit width of lnter-
cooler. Thus tl.e given intercooler Is assumed to
consist of a numbep of Inte:coolers of unit width
placed In parallel. Changirg the width of the given
intercooler by changing the number of tubes per bank
is equlvalerit to changing the number of Intercoolers
of unit wldtk. placed In parallel. qhe performance
chart, therefore, can be used for any valne of w
provided tho change In w is due only to the change
In the number of tubeg per “~auk, the tube gpacing
and other dimensions being constant. Figure 14 Is
a convenient plot of the foregoiEg relations for the
Intercooler designed in c~qe I. In this figure

~1 *PZ Is plotted agaiatat Ua avApa for vartous
av

valuea of q . Also ~in/W is plotted against

ca *Pa . and l#~fw agai~st az Apz.
av av

The best method of illustrating the procedure for
-king a performance chart” 1s to follow through a sample
problem for the Intercooler des:.gned in case I.

The dlmenaione of the Intercooler of case I are:

—.— —.
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d = 1/48 foot o = 0.00958 foot

m= 20 banks * = 0.0005 foot

la = 2.65 feet w= 1.415 feet

‘M = 916 tubes

When al AP% = 4 inzl.es of water, UaavApa = 505
av .

Inches of water and Ma = 1.75 p~unds per second, the in-

tercooler has a cooling effectiveness of 60 percent and a
value of Mz/Ma = 2 co that Xl = 3.5 pounds per second.

The problem is to determine the performance of the inter-
cooler at other val”ues of Uz Apl and UaavAPa and to

8V

mresent this information In the convenient manner exolained
%efore. When ~lavAPl = 4 inches of water, Ml = 3.3

pounds per second, Ifr/w =

width of intercooler, and

second-

2,47 pounds per second per foot

lTd/Ml = 5.5 feet per pound per

red/3 = 43.5 from figure 4,Sor ~ajd = 127 aud

(Za/d) =-113 and (mfi/e)oq = 34.8.eq
‘.

From figure 3 the sffec~lvemess values corresponding
to the varioue valuee of

o

1

a

4

xL/lfa can be chosen.

n

o

44.0

60.2

75.5

From the curve obtained by plottlng these points the
value of Ml/Ma can be selected for any value of cooling

effectiveneee for the given (Za/d)eq and (md/s)eq.
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Thus for every walue of cooling effect ive~eea there 58 a
correepondlng value of Ma for tke given value of Ml.

.. From the fact that uaavApn = 6.5 inches of water when

Ka = 1.75 pounds per eecond and from the relation

~aavApa = K3Maz”o, a plot of Ma versus ~aavApa can

be drawn. Thus for any value of Ha the corresponding

value of Ua fJP~ can be found as follows:
av

‘f) ?da OaavAPa M a/w

50 1.27 2.75 12.4 1.94

55 1.57 2*23 8.4 1.58

w 1.96 1.79 5.7 1.27

65 2.45 1.43 3.8 1.01

70 3.12 1.12 2.5 .79

75 3.s3 .89 1.7 .63

Yor any other value of =lav@l a solution for Uz can

be obtained from the relation Ul API = K4M11”6. qhe
av

procedure ie then repeated for various values of ~z Apz
aT

and Mz.

The following table gives the resulte of the forego-
ing procedure. I?lgure 14 is a plot of the results In the
recommended form.

— —. ——
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7
(a)———-——..-----——-—.-.—------

~lavAP1“in.of water 2

M lb~sec 2.38

M;;w , lb/sec/ft 1.68

lhl/M~, ft/lb/sec . 8.0

(tB/d) 121
eq

(md/s)eq I 40’0
i

,—— -- — —— -- --—--—— —.— ~—-.—.

(b)

.6

4.38
3.10

4.4

108

32.6

-—- -- —.

(c)

8

5.13
3.63

3.7

104

30.9

.—— —

%/% I q,percent

__Li__III
,-———---—-——-.—---—-—..-----.—.-

0
1
2
4

,---———--.—————-—-— —
,- —--—- ——- --- —-- --—- —-. --.-— ———-. —.

1 __.__.2__._.Ili2iiEz<:I
T M#da

I,—--— —- ———-—--. —-.—--— [

(al -,--— —-—-— - -——-----------——
50 1.18
55 1.47
60 1.32
65 2.25
70 2.32
?5 3,~o

,-——— —--- — ----- ________
(b)

----—- — —--—— ---
50
55
60
65
70

,-—-— ———
(c)

—--.—— --- --

2.02
1.62
1.3i
1.C)6
.84
-8.0

--.-.--—— --.-

-———-—

1.36 3.22
1.6a 2.61
2.11 2.08
2.63 1.67
3.35 1.31

7.1
4.7
3.3
2.2.
1.5
1.0

1.43
1..15

.926

.7!30

.534

.480

16.4 2.28
11.1 1.85
7.5 1.47
5.0 1.18
3.3 .926

,—-—-— —-—- --—-—- ___ —- ——————.

L
—--—--

I

I-
-—

50 1.42 3.61 20.2 2.55
55 1.77 2.90 13.6 2.05
60 2.20 2.33 9.1 1.65
65 2.77 1.85 6.0 1.31
70 3.50 1.47 4.0 1,04

-——- — —- —



— —.

al

Comparison of Charge-Through-Tube and

Charge-Across-Tube Intercooler@

In ‘refer-&ee 1 the oooling effectiverieoeof a crome-
flow tubular interoooler of the charge-across-tube type
Is shown to be a function mainly of Hz/Ma and cl~m

From the definitions of c and GI,

and where h is the over-all heat-transfer coefficient
and S is the heat-transfer area. The cooling effective-
ness can then be stated ~imply as a function of M~Ma

and Clza, the same terms involved In Nusseltts analysle

and in equation (12) of this report.

~or a given ~ /ha and c f la and within the range

of the design charts presented in this report, the cool-
ing effectiveness of the charge-across-tubs type of crose-
flow tubular Intercooler agrees closely with the cooling
effectlveneee values obtained from Mutaselt an~ from equa-
tion (12) of this report, the small differences being due
to the difference in the assumptions made In the deriva-
tions. Thus for a given heat-transfer area, over-all
heat-transfer coefflclent, and weight flow of charge and
ooollng air, the values of effeotivenesta of the two types
of croes-flow tubular interooolers are the came and are
equal to the effeotiveneaa of heat tranefer due to the
cross flow of two fluids over a plate.

Eor a given cross-flow tubular intercooler (that 1s,
a given m, ~, e, la, and N) operating at Ml/Ma = 1,

the process of lnt6rchanging the flows (that is, first
operating the Interoooler aO a charge-across-tube ty e
and then as a charge-through-tube type or vice versa Y
does not change the ooollng effectiveness if the effects
of the viscosities and the the~al conauetivtties of the
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charge and the cooling air, which In refer etice 1 were
shown to be smail, are neglected. The pressure drop
acrGss the intercooler tubes and the presdure drop
thrcngh the tubes remain substantially the same. E=

-pressed in 6ymbolfc”form, . .

. . .
. .“. ..

. . ..:
,“.~t=~a .-. .

and

. .

. .

wh”ere “t~e eu”bsc.rip.ts a ~nd t dencie f~e charge=acroeg-
tube type a~d charge-through-tube type of Intercoo.ler, re-
epectivel,r. If ~ M1/Ii2 has a value other than unity, how-
ever, tho process c: i~terchanging the flcws Increases
cne of the two indivit.ual heat-transfer coefficients and
deCrea6eB the other, the net .effoct on the over-all”heat-
traasfer coefficient .md thus o“a the cooling effectiveness

“ dspending m~inly on the ipitlal values of the Individual
heat-transfer coefficients and the value of Ml/Ma. Yhe

preesure drops through the tubes and acroes the tubes
change so as to satiofy a~proximately the relationship

a a~dp”= KM1” S. ‘ “, . .
.. ..-

where E ie a constant”of proportionality and” M either
the weight flow of the ~harge”dr the we~ght flow of the”
Coollrig air, “ “ “ . ::-.

For values of Ml/Ma other than unity,, in order. .
t’hat the twc types “of ~nterccolers have equql values Of

cooling effectiveness for a given heat-tranpfer area and
given air flows, the dfsposttion of tlie heat-transfer
area, and .t%ue.the m-er-a”l.l dimensions “of the tvo lnter-
coclers must be diffarent .sinc”,ethe flow conditions and
individual heali-transf6r ””coeffic!en~s’ ape dlffeient. Iq
general, the “ptiessure”.drops of th6 charge and th”eicooling

. . ..-. . . .. . . . . . . .. . . . ...—-.. -.



air must also be different. Yor m = 5 banks, cearha

-,.
= 10 inches of water, and cl API = 2 inches and 8 Inches

.. - -— . .,.- ---- av
of water, figure 15 gives the values of ooollng effe@ive-
ness of both types of Intercoolerta plotted against mdl#a

for various values of M#ia . ~he effeot of the numbed of

tube banks on the ~elatlons between the “oooling effective-
ness values for both types of Intercooler Is small so
that figure 15 covers conditions which are fairly repre-
sentative of atrcraft intercooler practice. The cooling
effectiveness of the charge-across-tube type Increases at
a sllghtly faster rate with Ml/Ma than does the cooling
effectiveness of the other type, The rate of change in
cooling effectiveness with Nd Z=/Ma is approximately the

same for both types of inteacoolers. From figure 15 it
Is seen t“~t some value of MJEa exists at which the

values of cooliag effectiveness of the two types are equal.
This value of Ml/Ma is apparently a function of al Apl,

av

CaavAPa* and m.

The factor l?dZa/M3 is an index of tube weight and

also, for a givsn tube diameter, an index of volume taken

~n(~ Ndta
)

up by the tutes -- -— .
(

For a given tube diameter and
~ Ma

for a given Hdt2/Ma, therefore. the difference in volume

between the two-types of intercoolers is the difference in
the volume of the spacing between the tubes. For a given

‘P
;~~ (that is, a given staggered tube arrangement) and

within the range of available test data, the relation be-
tween the tube spacings Sa a~d st for a oharge-across-

tube type and charge-through-tube type, respectively, may
be expressed as (see equation (15)),

~:=’. [&jj~’ ~!]o”’

—— —



where ICG ISIapproximately equal to 1.

In order to operate at a high oooling effectiveness,
tan intercooler must usually handle a greater weight flow
of”cooling air than charge, and the pressure drop allowed
for the oharge Is” usually greater than that available for
the cooling air. It Is then evident,---from the foregoing
equation, that the tube spacing aad thus the volumetric
requirements of the charge-through-tube type will usually
be greater than those of the other type.

With the aid of heat-transfer theory, relationships
between Intercooler performance and various Intercooler
dimensions may be derived for tubular intercoolers of the
charge-through-tube type. The graphical representation
of these relationships In ths form of design charts in-
cluded in this report simplifies the correlation of the
many varlablao Involved end should be of material assist-
ance in thg selection of an intercooler to satisfy a par-
ticular set of coadltiocs.

With a given staggered qrrangemeat of tub6s and in
the range OY practical i~terc~olar operation, the charga-
through-tube type of Intercooler genarally requires more
space than the c-barge-across-tube typet

Langley Memarial Aeronautical Laboratory,
IIatlonal Advisory Committee for Aeronautics,

Langley Field, Va.
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interoooler with oh8rge preeeure drop.

Yigu.re9.- Relation between charge preeeure drop and intercooler performance.



NACA
Km

8U
(~ d/s)eq

60
330
:!60.

40

20 — —

(a)
;0 -
$
580 160-

&’

o-

$60

~ / ~ * —
.%- / ~ - — . — -Q40

$

p20
<.
0 (b)
fio -

,40
80

60 “

40

20

(c)

o 20 40 60 80 /00 /20 /40 /60

1

Fig.3

(z,/d)w

(a) M1/M2,1; (b) M./M2,2; (c) M1fi2,4
Figure ,3.- Effect of intercooler dimensions on cooling

effectiveness.



YACA FigE1.4,13

Curve

curve

Figure 4.- Correction factore for Q#d and mi/a (from reference

/.o
Lpz

1 Ml pvfz —

o“. -..——----4
.8

‘. /

\ ‘.
‘.

.6
..

0.5‘‘-., \\

\
\

* -. \-.
R ‘.

.4 ‘“0:‘-’-’”Y.\
\.

2.0=-------->
\

~. \.. \‘. 1-..
.2 \ ‘. s

\ ‘. ‘. i--- . . ,. ‘.,~,,----\ .\ ,

0 20 40 60 80 /00

A (M/d)eq/(kJc$
B (ds)eq/(@/6)

1).

q,percen+

Figure 13.- Effect of ●rface Iaeat-tran*fer coefficient on
cooling effeotivenese.



.

,

IACA rig .5
80. MJM,

4., / G1-LlwlJwJ’ -l/

60 I I I I I I I I
I

-e \

I

I I
I I I I I I I I ~

/

~ -, / ; ~ T-t

-., ,-6 ,-W, onp

1.
h &&d

II / 2’.:> .
\~om~c!et~

a :m :0.55
l.. .74 .las: .99 .171

/ / (=)Ola#pl,a inohas of =*o?

40 . / 130 !40 !50 J60
!In

/00

I I I I I
(a) I

‘“i-t---f+t-t
o

60 1
a

:

[1.!
40

O..m

1:%
1.97

A-

O.oea
.171
.a57
.a4a

. .- _..-_ -- —-

f

al tllllll I I-L---7-I I _..+ ---JJ7- 1 7I /u-.J-----I 1,6 /2 I I I I1
r / r 150 160

/ /10
/,20 /30 140

/00
To I;o 90

L v
7/ 60

20

: (c)

o
4

~ 1-

2..,

60 - I
/

/
l.. / / I

( I1/ I 160
/ 150

40
Lo ’30 140

/
/ 60

Zo -

;(d)

o 5 10 Is 20 25 30 35 4{

1 0.74

I

O.laa
a 1.48 .a57

a.a3 .3M
: a.e7 .514

inohos of water

(%vy%@J %#
0.68 O.lla I

(d) q#PI,8 inolmof -tsr
?

Nd[ejMt, sq fi//b/sec
riguo 5.- Intezooohr dwmip o-. m,Sbuk@; aaa~,5.5 180x of ntor.



IAOA
80:

Plg.6

JVJM,
4.,

+
/ --+ --71--- 2. MI.. la

60 - I
/ > ~/ -

L

o :
4..,+

~ I —/2s,

60 - b I
0.068
.171
.a57
.34a

40 - (b)IJlaTA~,4inches of inter

?
u
Q
L

6

2 : (b)
?0 -
y
.. 4.,
$

t ~ ~
L...- --+-

2.. /
U
~ 60 I — I
c.. f

/ , / 1.,
2 I
G / , I I

1 I :.::140 150 160 . I O.laJ=“ !).” I
y. /lb/20 ‘-’” ““-

I

.-.?,
40 - ; ;:Z .388

4 a.e7 .514 I

(0)OlmTAm,IJin of water/
60

1 I 1 1 1

(c)

20wrtt—t—
0 .

4

+

60 - //

/ / l.,-
/

f5L ’60”—

40 - /

d @

F
e’o .90

q
70

60

20 -

:(d)

o 5 10 15 20 25 30 35 4/
NdZ, /M,, sq fi/lb/sec

?igtlrs6.-Intorooolor 40cign ekrt. m,~ bank-;a~avbpa, 6.5 inahos of mtar

L
1 0.88
a 1.Q7
3 a.97
4 3.96

0.171
.34a
.514
.685

I
Pa(m)

t%? ~
0.118

imhu of wtor



-s
i

P
:



40

30

20
~
T
~./0
.
Ir

_)o

q
~N

7-10

-my
a

-20

-30

-40

-50

0 5 10 15 20 25 30 35 40
MI 12fM2,sq fi//b/sec

‘Nd 12/M2/MJM2, w ff//b/sec

Figure 8.- Relation between charge pressure drop, (a) Relation between the cooling-air pressure drop, ~
Ndl@Jz, and inter.cooler tube length- NdlZ/Mz, M1/Mz, and red/s for m = 5 banks. ~.

diameter ratio. .

Figure 10.- Effect of cooling-air pressure drop, Ndlz/Mz, -m
and M1/Mz on red/s. G



160. I 1
S]do

02
Equi/aiero/ xl
spacing ‘.. o .5

w

Reference 3
140 A .25‘\J

00 v .25 reference 4
ox

n ,

x ~o

120
B - +

1 0

/’

x, ,.

.: 0
0

“Reference 5 (c)
100.

-$ e3 ❑“
Xe~ 80 r ~ * * I

< T o x

‘,
u eference 5 (b)

60
a0 a +

x8 x ~
x p

0 7=

40
(a)s

‘%eference 5

al

o .4 .8 1.2 1.6 2.0 2.4
W/(s+do)

Plav’Jlma#ohf = (a) 5!000
(b) 10,000
(c) 20,000

Figure 11. - Effect of tube arrangement on
Nusselt number in flow acro~s

sta~ered tube banks (from references 3
and 4).

.1,2- I I I I I
Equihieral.. ~ .Reference5

—spacing :
b

,

0o“
& o

.08
“x x~ra ~ 1

0 0

s/d.

.04
1

0 2.0
x

liii

‘.O Reference 3
0 .5

(c)
A .25
v

o
.25 Reference 4

.12 — - Equilateral.
spaCin9 “’.” -’ :“”~-’.Reference 5

,t

o

3X
c

ox “
{ 1 x

.08 x- 0

0

.04 1

f’”‘
(b]

o

.16

Equilutera/
spacing ‘-.. . ..-“,;.-Referen ce 5 ,)

./2
xx

( I

~o

.08

.04

(a)

o .4 .8 1.2 1.6 2.0 2’.4

= (a) 5000~la~vlmaxs’plf ,(b) 10’()()()

(c) 20:000

Figure 12.- Effect of tube
arrangement on

friction factor in flow
across sta~ered tube
banks (from references 3
and 4).

Sp/(S+do)



—

M, /w, ~/sec/ f+
o / 3 4

8
7=75 70 65 60 55

I f
.~ ,;jul/w

, / /

~
I

//

/

>6 / / 3.0*

c } / / 1 /
.. i / ,[ ,!:/ / k. y,/w >

.
,’ &- 2.091

2
/
//

<
-- -- :> G

&-
/
-- /

Q
.i i‘.
b2 ‘ / ‘

.
m. /

-/.0<

/ ‘ =?
/

0“2 4 6 8 /0 /2 /4 0
da. Apz , in.of wufer

Fi6uro 14.- Scmplo perf0rm2nc9 ahrt of an int*rcOOlor (cum 1).

100- -------- Chorge-ocross - tube fype
Cf70~ge;fhr~U@7ifUb~ fy,oe

Ill

:Ilt’xl=

1 1- /.1 1 1 I I
--

—
--- {

Kf-llllllllllwl
20; 1 , 1 1 I 1 1 1 ! , 1

/0 15 .20 25 30 35

Figc.14,15

d - .0206 ft
m -’ ~ banks
IF a.65ft

s--.00466 ft
II- 047w

NdZJM, , sq ft/lb/sec
(d qavapl,a inches of water

(b) u~*vA~, 8 inches of inter

Figure15.- Oompcri80n of two typcs of orocs-flw tubulm interooolora.
m, 5 bwc, uaavApa, 10 inches of -tar.



JllllllllllMllilllMlil!llRi
3 1176013647749


